Improved Regionalization of Quality Assurance (QA) Functions (a.k.a. Sharing Inspection Resources)

Eshan Dave, Michael Kotowski, Rasool Nemati
Jo Sias Daniel, Ricardo Medina, Alan Perkins

17 October 2017

Department of Civil and Environmental Engineering
University of New Hampshire
Outline

- Study Motivation and Objectives
- Review of New England QA processes for PSE/PCE
- Proposed Regionalized QA Process
- Logistics for Regionalization
Background of QA Procedures for PCE/PSE

- CFR Title 23 Part 637
 - QA processes ensure that desired level of quality is maintained throughout the manufacturing and construction processes

- AASHTO R38 gives the minimum requirements

- Significant cost savings can be realized if regionally accepted procedures are developed:
 - Inspection and testing resources can be shared
 - Streamlines producer operations when supplying to multiple agencies

- Differences exist between QA procedures of various agencies
1. List of Fabricators Currently (recently) Supplying PSE/PCE to NE DOTs

- PCI Certified Suppliers

<table>
<thead>
<tr>
<th>State</th>
<th>No. of PCI Cert. Fabricators</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>3</td>
</tr>
<tr>
<td>MA</td>
<td>6</td>
</tr>
<tr>
<td>ME</td>
<td>1</td>
</tr>
<tr>
<td>NH</td>
<td>1</td>
</tr>
<tr>
<td>RI</td>
<td>5</td>
</tr>
<tr>
<td>VT</td>
<td>3</td>
</tr>
</tbody>
</table>

Map of New England states with numbers indicating the number of PCI certified fabricators in each state.
1. List of Fabricators Currently (recently) Supplying PSE/PCE to NE DOTs

- NPCA Certified Suppliers

<table>
<thead>
<tr>
<th>State</th>
<th>No. of NPCA Cert. Fabricators</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>3</td>
</tr>
<tr>
<td>MA</td>
<td>6</td>
</tr>
<tr>
<td>ME</td>
<td>1</td>
</tr>
<tr>
<td>NH</td>
<td>3</td>
</tr>
<tr>
<td>RI</td>
<td>1</td>
</tr>
<tr>
<td>VT</td>
<td>3</td>
</tr>
</tbody>
</table>

![Map of New England showing the states and numbers of NPCA certified fabricators](image)
Study Scope and Objectives

- Review of current QA process used by New England DOTs for PCE/PSE
 - Literature review
 - QA Specifications
 - Interviews

- Propose regionalized QA process for PCE/PSE to be used by NETC constituents

- Explore cost-sharing mechanism to accompany the common acceptance standards
Review Methodology

- Information Gathering
 - Preliminary specification review
 - Questionnaire
 - Interviews with constituents
 - Detailed specification and QA process review
 - Fabricator visits (Oldcastle, J.P. Carrara)
 - QA process
 - Feedback
Review Methodology

- Information Processing
 - Master table of the QA process activities
 - Able to develop similarities and differences amongst the agencies.
 - Information was sorted and aspects of QA process were identified that would be most impacted by regionalization
 - Comparisons were made on these aspects and recommendations are generated
Review of State Practices

Brief summary is presented here:

1. Qualification and Certification of Plant/Fabricator
2. Fabricator QC Requirements
3. QA Process (Agency Inspection)
4. Curing Requirements
5. Miscellaneous
1. Qualification and Certification of Plant/Fabricator

- Pre-stress (PSE) Fabricators

| PCI | PCI + Agency Audit | Agency Prequalification |
1. Qualification and Certification of Plant/Fabricator

- Non pre-stress (PCE)
1. Qualification and Certification of Plant/Fabricator: Inspector Office

- Inspector Office/Facilities Requirements
 - RIDOT have the most comprehensive specification detailing the office requirements
 - Other agencies have similar requirements
2. Fabricator QC Requirements

 - PSE
 - *PCI MNL-116 for all agencies*
 - PCE
 - *PCI MNL-116 (MA)*
 - *NPCA (MA, ME, NH, VT)*
 - *Agency specified requirements (RI)*
2. Fabricator QC Requirements

- Qualification of QC Technician
 - PSE
 - PCI Level 2 (All States)
 - PCE
 - ACI Level 1 or 2 (MA, CT, ME)
 - PCI Level 2 (NH)
 - No requirement (RI, VT)
3. QA Agency Inspection

- Employee versus Consultant Inspectors
3. QA Agency Inspection

Inspector Qualification

<table>
<thead>
<tr>
<th>Agency</th>
<th>Prestressed Inspector Qualification</th>
<th>Precast Inspector Qualification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>ACI level 1 equivalent</td>
<td>ACI level 1 equivalent</td>
</tr>
<tr>
<td>MA</td>
<td>PCI Level 2</td>
<td>-</td>
</tr>
<tr>
<td>ME</td>
<td>PCI Level 2</td>
<td>PCI Level 1, 2, or 3</td>
</tr>
<tr>
<td>NH</td>
<td>PCI Level 2</td>
<td>PCI Level 2</td>
</tr>
<tr>
<td>RI</td>
<td>In-House Certification</td>
<td>In-House Certification</td>
</tr>
<tr>
<td>VT</td>
<td>PCI Level 1</td>
<td>PCI Level 1</td>
</tr>
</tbody>
</table>
3. QA Process: Inspection

- Pre-Pour (PSE/PCE)
 - The processes showed strong similarities amongst the six states
 - Comparison of the pre/post pour checklists provided by each agency.
3. QA Process: Agency Testing

- Plastic Concrete Testing
 - Frequency of Plastic Concrete Tests
 - CY, load, lot size, etc.

<table>
<thead>
<tr>
<th>Agency</th>
<th>Spread</th>
<th>Air Content</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td></td>
<td>Witness QC Results</td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td></td>
<td>Once per pour</td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td>First two (2) loads, then at discretion of QAI on basis of consistency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH</td>
<td>Per sublot (typ. 1/item)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI</td>
<td></td>
<td>Once per 150 CY or each day’s production</td>
<td></td>
</tr>
<tr>
<td>VT</td>
<td></td>
<td>First load + whenever cylinders are cast</td>
<td></td>
</tr>
</tbody>
</table>

NHDOT also require w/c ratio testing using microwave method.
4. QA Process: Inspection

- Post-Pour (PSE/PCE)
 - The checklists provided by each state varied slightly
 - Maine DOT has the most comprehensive post-pour checklist
 - Watching the element get loaded on transport requirement varies
4. QA Process

- Additional Hardened Concrete Testing
 - Maine and New Hampshire DOT – Permeability testing using AASHTO T-358, “Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration.”
4. **Curing Requirements**

- Ranged from well-prescribed requirements to not being included in the QA process.

<table>
<thead>
<tr>
<th>Agency</th>
<th>Curing Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>Not Inspected – Follow MNL-116</td>
</tr>
<tr>
<td>MA</td>
<td>Procedures Under Development</td>
</tr>
</tbody>
</table>
| ME | MNL-116 with exceptions.
 • Temperature gain <40°F/hr.
 • Initial set determined by ASTM C403
 • Maximum temperature of 160°F
 • Minimum temperature of 120°F
 • Until 80% of design strength is achieved |
| NH | Item Specific |
| RI | Accelerated curing allowed for PSE |
| VT | - |
5. Miscellaneous

- Fairly consistent requirements for IA
 - Inspectors are typically IA’ed once per year

- Estimated Inspection Cost
 - The agencies provided an hourly rate estimate for consultant inspectors.
 - It was found that the hourly rate ranged from $50/hour to $100/hour.
 - The lower end of the spectrum does not include travel reimbursement while the higher range incorporates additional costs for travel.
QA Process Review Summary

- Attributes that are most dissimilar between agencies:
 - Sampling frequencies
 - Inspector qualification

- Prestressed concrete element QA processes are more similar between agencies

- Preliminary recommendations are made for regionalized QA process
QA Cost Share Mechanisms

- At present no formal mechanism exists between other States DOTs
- Several DOTs conduct tests for other agencies, standard testing rates are established and costs are typically charged to the project
- Main challenge is costs associated with inspection and on-site testing
Regionalized QA Process Recommendations

1. Three Categories: PSE, Structural PCE, Non-Structural PCE

2. Plant Certification and Producer Testing Requirements

3. Agency Inspection

4. Logistics
1. Recommendation Layout (Categories)

- **Prestressed Elements (PSE)**
 - Examples:
 - *NHDOT Item 528, RIDOT Item 809, MEDOT Item 535*

- **Structural Precast Elements (precast piles, precast concrete superstructure etc.)**
 - Examples:
 - *NHDOT Item 594, RIDOT Item 804, MEDOT Item 534*

- **Non-structural Precast Elements (catch basins, storm drains etc.)**
 - Examples
 - *NHDOT Item 603, RIDOT Item 702, MEDOT Item 603*
2. Plant Certification

<table>
<thead>
<tr>
<th>Item</th>
<th>Element</th>
<th>PCI/NPCA Requirement</th>
<th>Additional Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC Plan (QSM) and Plant Requirements</td>
<td>PSE</td>
<td>PCI MNL-116</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural PCE</td>
<td>PCI MNL-116/NPCA</td>
<td>PCI MNL-137 for repair works and AASHTO M-157 for Ready Mix</td>
</tr>
<tr>
<td></td>
<td>Non-Structural PCE</td>
<td>NPCA</td>
<td></td>
</tr>
</tbody>
</table>
2. Producer Testing Recommendations (modifications to NPCA/PCI)

<table>
<thead>
<tr>
<th>Sampling and Testing</th>
<th>Item</th>
<th>Element</th>
<th>PCI/NPCA Requirement</th>
<th>Additional Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Casting Bed</td>
<td>PSE</td>
<td>-</td>
<td>Profile and Alignment check</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Structural PCE</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-structural PCE</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J-Ring or L-Box (AASHTO T-345 or ASTM C 1611)</td>
<td>PSE</td>
<td>-</td>
<td>For each SCC design and at the start of each element type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Structural PCE</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-structural PCE</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Strength Cylinders</td>
<td>PSE</td>
<td>Minimum of 4 Cylinders per element</td>
<td>Additional 4 cylinders for de-stressing strength</td>
<td></td>
</tr>
<tr>
<td>Structural PCE</td>
<td>4 Cylinders; PCI: Daily for each individual concrete mix, or every 75 CY NPCA: Every 150 CY per mix or once per week</td>
<td>Min. once per each day's production or every 150 CY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-structural PCE</td>
<td>4 Cylinders, every 150 CY per mix or once per week</td>
<td>Min. once per each day's production or every 150 CY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Fabricator QC Technician Requirements

- **PSE**
 - Minimum of PCI level 2 or higher qualification (or new NETTCP PS level 1 certification)

- **PCE**
 - Minimum of ACI level 2 or PCI level 1 (or NETTCP PS level 1 certification)
 - ACI level 1 is also acceptable for non-structural PCE
3. Agency Inspection: Pre Pour

- Minimal differences between agency practices.
- Maine and New Hampshire check-lists are the most comprehensive and user-friendly.
- A combined version of these is proposed to be used.
3. Agency Testing Recommendations

<table>
<thead>
<tr>
<th>Inspection Criteria</th>
<th>Element</th>
<th>Test Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>During Pour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>PSE</td>
<td>At least once per element and every 100 CY</td>
</tr>
<tr>
<td>Structural PCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Structural PCE</td>
<td></td>
<td>Once per continuous pour</td>
</tr>
<tr>
<td>Water/Cementitious</td>
<td>PSE</td>
<td>At least once per element and every 100 CY</td>
</tr>
<tr>
<td>Structural PCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Structural PCE</td>
<td></td>
<td>Once per continuous pour</td>
</tr>
<tr>
<td>Strength Cylinders</td>
<td>PSE</td>
<td>Once per element or every 100 CY; Number: Total 6 cylinders for permeability and strength testing</td>
</tr>
<tr>
<td>Structural PCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Structural PCE</td>
<td></td>
<td>Once per continuous pour; Number: Total 4 cylinders for strength testing</td>
</tr>
</tbody>
</table>
3. Agency Inspector Qualification

- **PSE**
 - Minimum of PCI level 2 or higher qualification (or NETTCP PS level 1 certification)

- **PCE**
 - Minimum of ACI level 2 or PCI level 1 (or NETTCP PS level 1 certification)
 - ACI level 1 is also acceptable for non-structural PCE
5. **Curing Requirements**

- Accelerated curing is the current state of the practice
- PSE and Structural PCE:
 - Controlling temperatures shall be those actually achieved within the concrete elements
 - Accelerated curing should started after concrete has attained initial set
 - Concrete temperature may be increased during the preset period at a rate of 10°F per hour or less
 - Total temperature gain during the preset period should be less than 40°F higher than the placement temperature or 104°F (lower of two)
 - A heat gain should not exceed 36°F per hour, measured in the concrete, provided the concrete has attained initial set
6. Logistics of Regionalized QA Process

- Need central entity to manage QAI pool
 - Central managing entity might be the solution (NETC or NETTCP like model)
 - ShiftPlanning or similar system (currently used by Vtrans) could be used to manage the pool and for purposes of scheduling

- Initial trials could be conducted using only consultant inspectors
 - Current range of rates are established and can be used for planning purposes
 - Focus initial trials for pre-stressed elements (simpler to unify QA process requirements)

- Technology could really help streamline the process
 - RFID tags + cloud-based storage
 - *Currently being explored by various agencies*
 - *Could serve as vehicle for real time data transfer*
Thank you for your attention

Contact:
eshan.dave@unh.edu
Phone: 603-862-5268