CONCRETE REINFORCEMENT – CORROSION RESISTANT ALTERNATIVES

Florida Atlantic University
Department of Ocean Engineering
Overview of Factors Affecting Durability of Concrete Bridge Structures

Material Factors
1. Cement/Grout
2. Admixtures
3. Aggregates
4. Type of Reinforcement
5. Material Variability
6. Duct

Environmental Factors
1. Temperature
2. Chlorides
3. Carbonation
4. Relative Humidity
5. Wet-Dry

Design/Construction Factors
1. Applicable Standards
2. Mix Design
3. Cover
4. Joints/Connections
5. Quality Control
The Case for Corrosion Resistant Reinforcement

Time to Surface Cracking

Propagation Period (ECR)

~ 5 y

Uncertainty

~ 5 y

Initiation Time
(CC)

Corrosion Initiation Time (Black Bar and ECR)

Black Steel

Cumulative Corrosion Damage

Time
The Case for Corrosion Resistant Alloys As Reinforcement

CS: Passive in concrete/cement pore water but with low Cl- tolerance

STAINLESS STEELS
- Alloys w/ >12w/0 Cr.
- More tenacious passive film than carbon steel (lower critical current density).
Project Objective and Concerns

Objective: Characterize the performance of different corrosion resistant reinforcements in exposures relevant to northern and coastal bridge applications.

Susceptibility to Localized Corrosion

1. Pitting.
2. Crevice Corrosion.

Concerns in Addition to Cl:

1. Carbonation.
2. Storage/Atm. Corrosion.
4. End Connections (Clad).
5. Torch Cuts/Welds.
6. Penetrations.
7. Product Variability.
Candidate Alloys

- Type 304 SS
- Type 316 SS
- Type 2205 SS
- Type 2201 SS
- Type 3Cr12 SS
- Clad Type 316 SS
 1. Stelax*
 2. SMI*

- MMFX-II*+
- Black Bar

Note: Default testing condition is with bars as-received.
* Testing in the surface abraded and surface damaged conditions.
+ Testing in the pickled condition.
Project Tasks

Short-Term Experiments:

- AST-1 Wet-Dry Exposure
- AST-2 A Potentiostatic Tests
- AST-2 B Potentiodynamic Polarization Scans
- Atmospheric Exposures

Long-Term Experiments:

- Reinforced Concrete Slab Exposures
AST-1 Wet-Dry Experiments
(Modeled after Previous FHWA/WJE Program)

- Multiple 152 mm long #5 rebar specimens in as-received condition (selected materials bent, abraded, surface damaged, and pickled).
- Repetitive 1.75 hrs wet – 4.25 hrs dry cycle (four cycles per day) in simulated pore water (pH~13.2).
- Incrementally increasing NaCl concentration with time.
- Total exposure duration 84 days.

![Graph showing NaCl concentration over time](image-url)

![Exposed specimens](image-url)
AST-1 Data Correlation

Corrosion Rate (RP), mpy

0.01 0.1 1 10 100

Corrosion Rate (WL), mpy

0.01 0.1 1 10 100

- Black Bar
- 316 ss
- 2205 ss
- 2201 ss
- 2201 P ss
- MMFX
- Stelax
Corrosion Rate versus Time for Straight Bars: AST-1
AST-2 Specimen and Test Cell

- Electrical Connection
- Exposed Circumferential Surface
- Epoxy

Dimensions in inches:
- 0.625
- 1.20
- 2.0
- 4.0

SCE
Specimen
Counter Electrode Mesh
AST-2 Potentiodynamic Polarization Experiments

- Anodic scans performed on individual candidate specimens in saturated Ca(OH)_2 with various chloride concentrations.

![Graph showing polarization experiments](image-url)
AST-2B Potentiodynamic Polarization Scan Results

Critical Pitting Potential, V (SCE)

NaCl Concentration, weight percent
Distributed Nature of the Critical Pitting Potential

![Graph showing distributed nature of critical pitting potential for different alloys](image)

- 2201 SS
- 2201P SS
- MMFX
- 3Cr12
- 304 SS
Corrosion Resistance Reinforcement As an Alternative to Conventional Structural Steel for Corrosive Applications – AST-2 (Electrochemical Testing)

A. Triplicate specimens in SPW+\([\text{Cl}^-]_{\text{low}}\) at RT and constant potential. Monitor applied current. Incrementally increase \([\text{Cl}^-]\). Retrieve bars once critical chloride concentration is reached.

B. Repeat (A) at pH = 9.

C. Repeat (A) and (B) at 40°C.

D. Correlate w/ results from 1) WJE test program, 2) AST-1, and 3) LLT.

AST-2 Rationale

Critical Cl⁻ Concentration

Increasing Cl⁻

Current Density

Potential, mV SCE
Test Yard Exposure of Deck Slabs
Potential Data, Black Bar Set 1
Potential Data, Set 1 Straight Bars

Potential (mV ref SCE)

Exposure Time, days

Current Density Data, Set 1 Straight Bars
Potential Data, Set 2 Cracked Concrete
Potential-Current Density Format

Potential – Current Density Trend

Current Density, µA/cm²

Potential, V (SCE)
Present Project Status

- Approximately 3 years into a six year effort.
- Atmospheric exposures to be initiated.
- AST-1 and -2A exposures to be completed.
- AST-2B exposures completed.
- Slab monitoring to continue.
- Correlations between accelerated, short-term exposures and long-term concrete slab exposures to be developed.
- Life cycle modeling as a function of HPMR type and exposure severity to be developed.