Life Cycle Cost Analysis Based on Service Life Modeling for NX Infrastructure

John Lawler, Ph.D., P.E.
Wiss, Janney, Elstner Associates, Inc.
7 October 2008
Corrosion Mitigation

- Consequences of corrosion can not be ignored

- Available Strategies
 - Corrosion Resistant Reinforcing Steels
 - High Performance Concrete
Troubleshoot existing structures
 - Have perspective on what causes failures and how to prevent them

Research history of alternatives to black bar
 - Field performance investigations with various DOTs and CRSI – service life models
Life Cycle Cost Analysis

- Recommended by FHWA as method for choosing between alternatives

- This study compares **Annualized Costs**
 1. Performance in typical bridge deck modeled based on bar properties
 2. Total direct costs calculated over life of bridge
 - Includes construction, maintenance, but no User costs
 3. Convert to equivalent annual cost
Model for Damage

- Corrosion Initiation at Chloride Threshold (C_T)
- Chloride Accumulation
- Initiation Time (t_i)
- Propagation Time (t_p)
- Time

Surface Damage

Deterioration at a single location
Chloride Penetration

- Ingress of chloride governed by Fick’s Law Sol’n:

$$C(x, t, C_s, D) := (C_s - C_0) \cdot \left(1 - \text{erf}\left(\frac{x}{2 \cdot \sqrt{D \cdot t}}\right)\right) + C_0$$

Effect of Depth

- 1 in.
- 2 in.
- 3 in.

Effect of C_s

- 26 lb/yd³
- 13 lb/yd³
Corrosion Initiation Model

- Initiation time (t_i) modeled based on Chloride threshold (C_T) and cumulative distribution functions based on field data for:
 - Surface concentration (C_s)
 - Diffusion coefficient (D_0)
 - Cover depth

- Considered cracks over 5% of area as 5x Diffusion coefficient elsewhere
Modeling challenges

- Determination of Inputs (C_T, t_p)
 - Corrosion resistant bars require long or accelerated tests; most do not assess t_p
 - Wide variety of opinions in industry

- Stainless clad bar
 - Effect of bar ends, breaks in cladding
 - Clad bar treated as 316 stainless with bar ends performing as black bar in 1.4% of deck area
Model inputs

- Cover a range of expected performance (pessimistic to optimistic)

<table>
<thead>
<tr>
<th>Case</th>
<th>Corrosion Threshold, CT (lbs/yd³)</th>
<th>Propagation time, tp (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>1, 1.5</td>
<td>5</td>
</tr>
<tr>
<td>ECR</td>
<td>3, 6, 9, 12</td>
<td>15</td>
</tr>
<tr>
<td>MMFX-II</td>
<td>3, 4.5, 6</td>
<td>9</td>
</tr>
<tr>
<td>Stainless Clad (SCR)</td>
<td>10, 15, 25</td>
<td>25</td>
</tr>
<tr>
<td>304 SS</td>
<td>7.5, 15</td>
<td></td>
</tr>
<tr>
<td>316 SS</td>
<td>10, 15, 25</td>
<td>25</td>
</tr>
</tbody>
</table>
Model Inputs

Concrete and Exposure Distributions:

<table>
<thead>
<tr>
<th>Bridge Property</th>
<th>Average (Coef. of Var.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Cover (Bridge Construction)</td>
<td>3 in. (10%)</td>
</tr>
<tr>
<td>Diffusion Coefficient (Concrete Quality)</td>
<td>0.15 in2/yr, 0.025 in2/yr for HPC (45%)</td>
</tr>
<tr>
<td>Surface Chloride Concentration (Exposure Conditions)</td>
<td>26 lbs/yd3 (22%)</td>
</tr>
</tbody>
</table>

Values based on WJE field studies in Iowa and Virginia of 9 decks, but severe exposure
Damage limit for repair

Damage Fraction (%) vs. Time (yrs.)

- Black
Black

MMFX-II

Damage limit for repair

Time (yrs.)

Damage Fraction (%)

0 10 20 30 40 50

0 2 4 6 8 10 12 14 16 18 20
Damage fraction (%) vs. time (yrs.)

- Black
- MMFX-II
- ECR
- Black w/HPC

Damage limit for repair
Damage limit for repair

304 SS

Time (yrs.)

Damage Fraction (%)
Damage limit for repair

304 SS

SCR
Damage limit for repair

Damage Fraction (%)

Time (yrs.)

304 SS

SCR

316 SS
Economic Analysis Inputs

- Maintenance Program
 - Patching starts at 1% damage and deck is patched up to 10% of the area before an overlay is placed.
 - Deck is overlaid when damage level reaches 10%.
 - After two overlays, the deck service life is complete.
 - Total life span of all decks is terminated at 100 years.
Economic Analysis Inputs

- Real discount rate (corrected for inflation):
 - 2.8% - 2008 US OMB Circular A-94
 - 4%

- Overlay (finite life span):
 - 7 yrs.
 - 15 yrs. – Average based on WJE survey
 - 25 yrs.
Economic Analysis Inputs

- **Bridge costs** determined based on “average”-sized bridge (FHWA report)

- **Bar costs** used for initial bridge deck costs based on April 08 pricing provided by NX Infrastructure

<table>
<thead>
<tr>
<th>Bar Type</th>
<th>Black</th>
<th>ECR</th>
<th>MMFX-II</th>
<th>Clad</th>
<th>304 SS</th>
<th>316 SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost ($/lb) – Fab’d and Delivered</td>
<td>0.94</td>
<td>1.15</td>
<td>1.13</td>
<td>2.90</td>
<td>3.46</td>
<td>4.95</td>
</tr>
</tbody>
</table>

- **HPC cost** - Material 150% of that for conventional conc.
Deck Life Spans (Overlay Life=15 yrs)
Range of Costs

Disc. Rate = 2.8%
Overlay = 15 yrs.

Service Life Inputs shown: C_t in lbs./yd.³, T_p in yrs.

Annualized Life Cycle Cost ($)
Effect of Overlay Life

- Longer Overlay Life = Decreased Annualized Cost
- Most corrosion resistant alternatives appear better if overlay life is short
- Regardless of overlay life, SCR (25 lbs/yd³) has lowest Annualized Cost
Effect of Discount Rate

- Higher discount rate = Increased Annualized Cost
 - Future costs weighted less heavily versus initial costs

- For 2.8% discount rate, SCR (25 lbs/yd³) has lowest Annualized Cost

- For ≥4% discount rate, ECR (12 lbs/yd³) has lowest Annualized Cost
Best Estimate for SCR

- Overlay = 15 yrs., Rate = 2.8%

- Consider Annualized Cost for Optimistic corrosion resistance:
 - SCR is 43% less than Black Bar
 - SCR is 10% less than ECR
 - SCR is 17% less than Solid 316 SS
Conclusions

- Modeled Range of Inputs Due to Uncertainties: Corrosion resistance, Material Costs, Discount Rate, Overlay life, **User Cost**

- SCR showed lowest Annualized Cost (2.8%, 15 yrs.) even with bar ends treated as black

- Model is available for specific projects
Questions?

John Lawler

JLAWLER@WJE.COM
Effect of User Costs

- User Costs - $ value assigned to public

- Simple Example
 - Traffic congestion on average bridge due to:
 - 150-day construction
 - 45-day rehabilitation
 - Assumed delay time, $/hr
Effect of User Costs

- Results of User Cost analysis
 - Produces 4-6x increase in Annualized costs
 - Benefits of more corrosion resistant alternatives greater
 - SCR (25 lb/yr) still least expensive choice
 - 316 SS replaces ECR as 2nd best alternative